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Strategic Control of Reactive Behavior in Intelligent Agents 1

Barbara Hayes-Roth, Lee Brownston, and Anne Collinot

Stanford University
University of Paris VI

October, 1992

Abstract: An intelligent agent must often choose among several

competing actions. To act effectively in real time, it must both

generate strategic plans and respond to external events.

Constructing plans comp!etely in advance lacks flexibility, while

purely reactive systems can lack generality. We present an

algorithm which dynamically constructs a control plan and yet uses

this plan in a reactive fashion when response time is critical. This

Satisficing algorithm uses the control plan to process both events and

known actions in a most-promising-first order, terminatig its search

whenever it has either encountered a potential action that exceeds a

declared threshold, reached a temporal deadline, or exhaused all

known actions, whichever comes first. Experiemental results are

presented to demonstrate that the satisficing algorithm has the

expected and desired characteristics.

Area: Architectures and languages for Al

1 Research and preparation of this paper were supported by NASA contract NAG
2-581 under DARPA Order 6822 and AFOSR grant AFOSR-91-0131.
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1. Controlllng Behavior in Intelligent Aaents

Consider an agent whose job is to monitor a ventilator-assisted

patient in the intensive care unit. The agent is busy making a plan

for gradually reducing the amount of assistance provided by the

ventilator and eventually weaning the patient. In the midst of its

planning, the agent perceives an abnormally high value of the peak

inspiratory pressure ("PIP") required to inflate the patient's lungs. At

that point, several actions are available to the agent, including: (a)

continue planning; (b) report the observed high PIP to a physician;

(c) begin to diagnose the problem underlying the high PIP; (d)

recommend an action to give the patient more oxygen; or (e) look for

interesting patterns in other perceived patient data. How does the

agent decide which action to take?

As this simple example illustrates, any non-trivial agent faces a

challenging control problem. The agent is bombarded by a continuing

stream of events, some generated internally and some externally.

Each event may suggest many possible actions, some of which would

be executed internally and some externally. But the agent cannot

execute them all. How does it choose among many possible actions at

each point in time?

There are two main approaches to control in the Al literature. In the

"classical planning model" [Fikes and Nilsson, 1971], an agent reasons
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about actions, events, and goals ahead of time to construct a plan of

specific actions that will achieve its goal. At run-time, it executes the

planned actions. When the agent's assumptions are correct, this

approach produces globally effective behavior and minimizes the

cost of run-time perception and action selection. However, detailed

planning is computationally expensive [Chapman 87] and plans are

vulnerable to run-time events. The agent cannot respond to

unanticipated demands and opportunities for action without an

expensive, time-consuming replanning process. In the "reactive

model" [Agre and Chapman 87; Kaelbling 87], an agent constructs, or

is programmed with, a compiled network of goal-specific perception-

action rules. At run-time, it uses perceptual events to select actions

for execution. When the number and rates of perceived variables are

fixed, this approach allows the agent to respond in bounded time to a

range of possible events. However, it is difficult to construct complete

networks for complex task environments [Ginsberg 89], it is difficult

to produce globally-effective behavior from locally effective actions,

and reactive networks are useless when goals change [Maes 90],

knowledge grows, or unanticipated events occur. Thus, although

planning and reactive models work well for particular classes of

problems, neither of them solves the control problem for intelligent

agents.

As we have discussed elsewhere [Hayes-Roth and Hayes-Roth79;

Hayes-Roth 85; Hayes-Roth 90; Hayes-Roth, et al., 92], a control

architecture for intelligent agents must integrate the strengths of

both planning and reactive models, while avoiding their limitations.
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An intelligent agent should make and follow strategic plans. Given

some global objectives, it should decide which short-term goals to

pursue and how to pursue them - based on its run-time

circumstances. Only in rare cases will the agent need (or be able) to

make a complete and detailed plan of the sort produced by classical

planners. More often, a rough "outline" of the intended rourse of

action will suffice. For example, our monitoring agent might observe

some unexpected patient data and set a short-term goal to diagnose

the underlying problem. If the observation is critical (e.g., high PIP),

the agent might plan a specific series of tests to confirm or

disconfirm life-threatening conditions (e.g., a hole in the lung, called

a "pneumothorax") as soon as possible. If the observation is not

critical (e.g., low temperature), the agent might decide only to track

the observed variable and related variables a little more closely to

see what develops. If the agent's circumstances entail multiple goals

(e.g., simultaneous observations of high PIP and low temperature),

the agent can decide how to coordinate its efforts to achieve them,

for example by interleaving their component actions, by performing

actions that address both of them, or by postponing or permanently

ignoring one of them.

An intelligent agent should react to run-time events. It can only

execute actions that are possible at run time and it can only evaluate

their utility in their run-time context. So there usually is no need and

no payoff for the agent to try to anticipate each and every action it

will perform. Instead, possible actions become apparent as the agent
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goes about its business. It should execute those that advance its

current plans, but it also may execute unplanned actions. For

example, in trying to predict the consequences of a patient's

unexpectedly low temperature, a monitoring agent can estimate the

patient's blood gases either by: (a) inspecting continuously sensed

data - if an oximeter is in place; or (b) requesting a laboratory test

and waiting twenty minutes for the results - if a nurse is available

to draw blood. If the monitoring agent has no immediate goals, it

might nonetheless perform actions to track and interpret key patient

variables--a potentially useful expenditure of slack computational

resources.

To address these requirements, our agent architecture provides a

uniform "generate-and-test" mechanism to control all behavior: (1)

The agent reactively generates possible actions based on run-time

events. (2) The agent tests possible actions against its current

strategic plan and executes the best one. Because the model does not

distinguish internal from external behavior, the agent sometimes

generates, tests, and executes actions that change its strategic plan,

thereby changing the criteria it uses to test future actions. Thus, the

agent architecture uses reactively-constructed strategic plans to

control the selection and execution of reactively-generated actions.

In addition to integrating strategic and reactive behaviors, our

control architecture has other desirable properties. It simplifies the

knowledge acquisition problem because an agent need know only

what events enable each of its actions, not every combination of

6



goals and events that make each action the best alternative. It

simplifies planning because an agent can plan classes of actions to

execute during time intervals, rather than planning individual

actions to execute at time points. It increases versatility and

extensibility because the agent can use different combinations of

actions under different strategic plans to achieve different goals; it

can acquire new actions, plans, and goals independently. It permits

explanation of behavior in terms of the strategic decisions that

actually produced it. Finally, it introduces the first real possibility of

executing possible actions that have not been planned at all, either

because the agent has adopted the "universal plan" or because it

chooses to act in any way possible when no currently available action

matches its plan.

We have experimentally demonstrated and evaluated these

properties of the proposed control architecture in two classes of

agents. In a class of design agents [Hayes-Roth, et al., 86; Garvey, et

al., 87; Johnson, et al., 87; Tommelein, et al., 91], the need for

reactivity arises primarily from uncertainty in the effects of the

agent's own actions, with some additional uncertainty from a human

user's discretionary interventions in the problem-solving process.

The need for strategic control arises from differences in problem-

solving efficiency for different sequences of actions. In a class of

monitoring and control agents [Hayes-Roth, et al., 89; Hayes-Roth, et

al., 92; Murdock and Hayes-Roth 91], there is considerable additional

uncertainty in the exogenously-determined behavior of the

monitored system, as well as in its responses to the agent's actions.
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And the agent can choose among a larger repertoire of possible

actions, influencing not only efficiency, but effectiveness, timeliness,

completeness, and other properties of a multivariate utility function.

For monitoring agents and other agents operating in dynamic

environments, the simple form of our control mechanism has a

serious weakness. If an agent reactively generates all possible

actions, the computation required to complete a "cycle," its basic unit

of behavior, is unbounded with respect to key features of its task

environment: event rate and number of known actions. If n is the

number of observed events and k is the number of known actions, in

the worst case, the time to generate all possible operations is O(nk).

Translating into real time, an agent's rate of operation slows down as

its environment increases in volatility and as its knowledge

increases. This is nonintuitive for a so-called "intelligent" agent and

catastrophic for an agent that must meet real-time constraints. The

problem is not solved by introducing multiple processors because

any agent will have limited resources and the possibility of situations

that exceed its resources.

An intelilgent agent must reconcile limited computational resources

with an effectively unbounded task environment.

At a minimum, an agent must maintain a stable "rate of thought,"

which we operationalize as a bounded cycle time that is immune to

event rate and number of known actions. Thus, the agent could

guarantee a maximum latency for simple reactions (e.g., to signal an
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alarm after perceiving critical data), reliably estimate its latency for

multi-action behaviors (e.g., to diagnose an observed problem), and

plan multi-action behaviors that meet deadlines (e.g., to diagnose

high PIP, with a four-minute deadline, versus low temperature, with

no particular deadline). Because absolute cycle time reflects

implementation artifacts, it is less important than bounded cycle

time and protection from complexity. If we can meet these

objectives, absolute cycle time can be speeded up by a constant

factor with conventional techniques.

Ideally, an agent should be able to "think fast" or "think carefully," as

appropriate, which we operationalize as a deliberate modulation of

cycle time within some range. Thus, the agent could deliberately

improve the latency of its responses to urgent events (e.g., to act

immediately to avert a life-threatening condition) or, conversely,

improve the expected quality of its responses to other events (e.g., to

identify the most specific diagnosis and the optimal response to a

complex condition). Obviously, the agent could make these

adaptations only by trading speed for quality in the task at hand or

by compromising other aspects of its behavior, such as its

(non)performance of competing tasks.

2. A Satisficina Algorithm for Real-Time Control

To address these requirer., nts, we specialize our architecture's

"generate-and-test" mechanism %Ai,.h a parameterized satisficing

algorithm, as illustrated in Figure 1.
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First, the satisficing algorithm bounds the number of observed

events and known actions the agent considers on each cycle. A fixed-

capacity event buffer bounds the number of observed events to a

constant, nb. The buffer overflows worst-first based on event ratings

against the control plan. An event discrimination tree bounds the

number of actions considered for a given event to a variable, kb, the

number of "relevant" actions in the tree. From these, it further

prunes actions worst-first, based on rating against the control plan.

Thus, cycle time is strictly bounded by the product nbkb.

Second, the satisficing algorithm orders the generation of possible

actions on each cycle by moving some of the "test" of our generate-

and-test mechanism into the "generator." Ratings against the control

plan are used to order the selection of observed events from the

buffer and, for a given event, to order the selection of retrieved

relevant actions. For each event-action pair whose additional

conditions are true, a possible action is created, rated, and placed on

an agenda that has fixed capacity (a stable parameter) and worst-

first overflow. Other things equal, a possible action based on a

highly-rated observed event or a highly-rated retrieved action will

itself have a high rating. However, the possible actions cannot be

generated strictly best first for several reasons: possible actinns may

be based on a highly-rated event or action, but not both; possible

actions may be based on continuous, rather than binary, ratings of

events and actions; possible actions may have different ratings

against control plans for competing tasks. Thus, possible actions are
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generated roughly best first. The control plans that determine the

degree of best-first generation are parameters set dynamically by

the agent.

Third, the satisficing algorithm terminates generation of possible

actions and executes the best one generated so far under any of

three conditions. (1) The algorithm terminates whenever a possible

action is generated that exceeds a threshold rating with respect to

the current control plan. In that case, it executes an action that is
"good enough" as soon as possible. (2) The algorithm terminates

whenever a cycle deadline occurs. In that case, it executes the best

available action when necessary. (3) The algorithm terminates

whenever all observed events and retrieved actions have been

considered. In that case, it executes the best possible action under

the circumstances. The two interrupt conditions, good-enough

threshold and cycle deadline, are parameters set dynamically by the

agent.
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interrupt that produces a "good enough" action prior to deadline

whenever possible.

In the present experiment, we define "good enough" intuitively as a

high rating on both event and action against a very important control

decision. Operationally, we define it as a high absolute threshold for a

possible action's weighted rating against a single control decision: WR

= ((ER + AR) / 2) * I, where ER is the 0-1.0 rating of the possible

action's event against the event specified in the control decision, AR

is the 0-1.0 rating of the possible action's action against the action in

the control decision, and I is the importance of the control decision.

For example, assume that Guardian, our prototype patient-

monitoring system, has made two concurrent control decisions: a

very important one, "Respond-to critical data;" and a less important

one, "Interpret new data." Assume that two events co-occur:
"observed high PIP" is a critical event; and "observed low

temperature" is a non-critical event. Finally, assume that for each of

these events Guardian knows three relevant actions: "react-to" is a

member of the action class "respond-to;" "explain" and "predict-

effects-of" are members of the action class "interpret." Six possible

actions could be generated in this situation, with different ratings

weighted against the two control decisions, as illustrated in Figure 2.

Only one of them, "React-to high PIP," gets high ratings on both event

and action against the very important control decision, "Respond-to

critical events." Therefore, only "React-to high PIP" would be "good

enough" to execute immediately after generation and prior to

deadline. With this definition of "good enough" and a conservative
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deadline, Guardian cycles never run until deadline during the

experimental scenario discussed below; cycles always are interrupted

by generation of a possible action that is good enough.

1.0

5.0

0.0

R-PIP E-PIP P-PIP R-Temp E.Temp P-Temp
Weighted ratings of possible actions against:
Respond-to critical events. -
Interpret new data.

Figure 2. Weighted ratings of six possible actions against two
concurrent control plans.

To test the predictions, we measured Guardian's cycle time during a

carefully controlled segment of a longer monitoring scenario. The

segment begins when the patient simulator produces an abnormally

high value of the patient's peak inspiratory pressure; it ends 23

cycles later, when Guardian recommends the corrective therapy of

inserting a chest tube. During the entire segment, Guardian executes

these actions:

Make a control decision:

"React-to high PIP (peak inspiratory pressure)."

14



Perform a series of diagnostic reasoning actions.

Diagnose problem class: "Hypoxia."

Recommend useful interim action:

"Increase MV (minute ventilation) to insure adequate oxygen."

Perform a series of diagnostic reasoning actions.

Diagnose underlying problem: "Pneumothorax (hole in the lung)."

Recommend corrective action:

"Insert a chest tube to release accumulated air from the lungs."

To control Guardian's internal state at the time measurements were

made, we programmed our patient simulator to produce the first

high PIP event and begin the experimental segment about 55-60

cycles into the larger monitoring scenario. More specifically, it occurs

immediately after Guardian sets up its monitoring parameters,

creates its default control plan, adjusts its sensed data rates, and

begins classifying observed patient data, but before it performs any

other reasoning tasks. Thus, in all conditions, the experimental

segment begins immediately after Guardian reaches the same

internal steady-state (e.g., current control plan, ongoing tasks,

memory load, memory contents). Otherwise, differences in internal

state could produce artifacts in our measurements.

We manipulated three experimental variables, the event rate during

the experimental segment, the number of different actions Guardian

knows, and the two together. In the "base" condition, approximately

280 events occur (an average of 12 per cycle) and Guardian knows

51 different actions. To produce the other experimental conditions,
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we replicated the base condition events and actions 2, 4, and 8

additional times, separately and together. Thus, in the worst (that is,

most heavily burdened) condition, covariation at 8 times base rate,

approprimately 2240 events occur (an average of 97 per cycle) and

Guardian knows 408 different actions.

We measured cycle time, excluding action execution time, which is

not covered by our predictions. To reduce "noise" in the data, we

repeated all conditions three times. Thus, the average cycle time for

each condition represents 69 observations (3 replications on each of

23 cycles); the data are highly reliable.

For comparison, we performed exactly the same manipulations and

measurements with an "exhaustive" algorithm. It uses the same

event discrimination tree used by the satisficing algorithm to bound

the number of relevant actions considered for each event, but

otherwise tries to generate possible actions for every known action

that is relevant to every observed event.
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220
200
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-0 . ..
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Factor Increase for Number of Known Actions (A), Observed Events (E),
and Both Known Actions and Observed Events Together (AE)

Satleficing-Ail

Figure 3. Effects of complexity factors on cycle time for the
satisficing and exhaustive algorithms.

Results appear in the right panel of Figure 3. As predicted, the

satisficing algorithm produces effectively constant cycle time, despite

increases in the number of observed events, the number of known

actions, or the two variables together. The three lines representing

these three independent variables are effectively identical and are

superimposed in Figure 3. The satisficing algorithm is insensitive to

event rate because, on each cycle it very quickly identifies the best

available event and uses it to try to generate an executable instance

of the best of the relevant actions; the resulting possible action

typically is good enough to execute immediately. Other less

important events simply accumulate and overflow the event buffer,

worst first. The satisficing algorithm is insensitive to number of

known actions because, for a given event, it uses the event tree to
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bound the number of relevant actions it considers and very quickly

identifies the best of those; again, the resulting possible action

typically is good enough to execute immediately. Other less

important actions are never considered. Increasing event rate and

number of known actions together poses no new problems for the

satisficing algorithm.

By contrast, with the exhaustive algorithm, cycle time appears to be

a linear function of number of known actions and a positively

accelerated function of event rate. In fact, cycle time grows so fast

with increases in event rate and the covariation that it was

impractical to complete the experiments in those conditions. This is

because the exhaustive cycle considers every observed event and for

each one, every relevant action. Increasing the number of known

actions is not as bad because the exhaustive cycle uses the event

discrimination tree to bound the number of relevant actions it

considers for each event. In our experiments, there are only 2-3

actions relevant to each observed event in the base condition and,

therefore, only 16 or 24 in the extreme conditions where the base

number is increased by a factor of 8. The linear effect remains

because the exhaustive cycle must consider all of the relevant

actions. In agents that know significantly more actions or actions

with weaker enabling conditions, the event tree alone might not

bound relevant actions so effectively and the effect of number of

known actions would increase in magnitude.
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These results replicate the qualitative findings of a prior experiment

[Hayes-Roth and Collinot, 1993], shown in the left panel of Figure 3.

However, in contrast to our careful control of Guardian's state in the

present experiment, the prior experiment confounded state with

manipulations of the independent variables. In that experiment, we

programmed our patient simulator so that the high PIP occurred

after a fixed real-time delay, during which Guardian perceived and

responded to other events (e.g., abnormal patient data or questions

from a user). Since the number of cycles Guardian completes during

any given real-time delay is inversely related to its cycle time,

Guardian began the experimental segment after a different number

of cycles and, therefore, in a different internal state in different

experimental conditions. Because it is very difficult to characterize all

of Guardian's state variables and very difficult to pr-dict their effects

on cycle time in different experimental conditions, the methodology

of the prior experiment casts some doubt on the interpretation of its

results. Thus, the present experiment provides an essential

replication of the earlier results under better controlled conditions.

Comparing results of the two experiments, the only obvious

difference is that cycle time is consistently shorter in the present

experiment than in the prior experiment. This is probably not an

effect of controlling state so much as an effect of making our

measurements early in the larger monitoring scenario. In the prior

experiment, Guardian does more reasoning before the experimental

segment begins, producing more information in memory, which

19



generally slows its performance. This phenomenon is independent of

our predictions and experimental manipulations.

The important finding is that the two experiments produced

qualitatively similar results, confirming the satisficing algorithm's

ability to bound cycle time under a variety of conditions.

We have confirmed the sufficiency of the satisficing algorithm to

bound cycle time. But are all of the algorithm's key features

necessary?

To answer this question, we performed the same experiment with

two variations on the satisficing algorithm. Table 1 compares these

algorithms with the satisficing and exhaustive algorithms. The

satisficing algorithm has five key features: bounding of the number

of (1) events and (2) actions considered during generation of possible

actions; best-first ordering of the retrieval of (3) events and (4)

actions for consideration; and (5) interruption of possible action

generation to execute an action that is good enough. The unbounded-

events algorithm eliminates bounding of the number of events

considered. The interrupt-only algorithm also eliminates the best-

first ordering of event and action retrieval. The exhaustive algorithm

also eliminates the "good enough" interrupt.

Table 1. Four Generate-and-Test Algorithms

20



Key Features of the Satisficing Algorithm

Algorithm Bounded Variables Ordered Retrieval Interrupt
Events Actions Events Actions

Satlsflicng x x X x x

Unbounded-events - + x x x

Interrupt-Only - x

Exhaustive - +

Figure 4 shows the results for the Satisficing, Interrupt-Only, and

Exhaustive algorithms. With the alternative algorithms, cycle time

increases linearly with number of known actions. It increases more

than linearly with event rate - so much that it became impractical to

measure it at the higher event rates. Cycle time increases even faster

with the covariation of event rate and number of known actions, so

we were unable to collect data for the alternative algorithms in most

of those conditions. The results for the Unbounded-Events algorithm,

not shown in Figure 4 so as to reduce clutter, showed that cycle time

grew negligibly as a result of number of known actions, but grew

explosively when event rate increased.

Note that our experiment is designed so that Guardian will execute

the correct sequence of actions described above in all conditions,

regardless of algorithm, if given enough time and computational
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resources. However, even without network crashes and even

assuming a gen erous constant factor speed-up, the alternative

algorithms would execu -e the correct actions much too late to

produce their intended effects in a real-time environment. Only the

satisficing algorithm produces correct actions with constant cycle

time, despite increases in event rate and number of known actions.

These results argue for the necessity, as well as the sufficiency, of all

key features of the satisficing algorithm to bound cycle time in

unbounded task environments.

40 *

20

10 + AE .E
AE + +

t' / :: + bE
-Satisficing A, E, AE

0 1 2 48

Factor Increase for Number of Known Actions (A), Observed Events (E),
and Both Known Actions and Observed Events Together (AE)

• Satisficing, + Interrupt-Only, * Exhaustive

Figure 4. Comparison of cycle times, with variation in event rate
and number of known actions, for four algorithms.

The observed results depend on an appropriate parameterization of

the satisficing algorithm, in particu!ar an appropriate definition of
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"good enough," given the task environment. The absolute threshold

we used to define "good enough' is appropriate ,or agents whose task

environments require them to "think fast" in easily recognizable

emergency situations. Alternatively, an agent might wish to '".hink

fast" all of the time, even in non-emergency sit,:ations--in which

case, it might be better to define "good enough" relative to the most

important active control decision, rather than in terms of an absolute

threshold. We return to this point below. For now, we note that the

definition of "good enough" is a parameter that the agent designer or

the agent itself can set and modify as appropriate for a dynamic task

environment.

4. Modulatina Cycle Time to Control the Saeed of Thoulaht

Our second prediction is that, with an appropriate parameterization

of the satisficing algorithm, an agent can modulate its cycle time to

"think fast" or "think carefully," at its own discretion. Again, the

agent can modulate its cycle time directly by adopting different

deadlines in different situations. However, as discussed above,

deadlines are a crude instrument for controlling cycle time without

unduly jeopardizing correctness. What we want axe cycle time

modulations that promote correctness. The solution we propose is to

modulate cycle time indirectly by manipulating the discriminative

power of control plans--intuitively, the degree to which a control

plan discriminates a small number of possible actions that are "good

enough" from a much larger number of possible actions that are not.

A very discriminative control decision enables an agent to generate
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and execute an action that is good enough (or determine that no good

enough action can be generated) very quickly. A less discriminative

control decision requires the agent to generate a larger number of

sub-threshold possible actions before generating one that is good

enough (or determining that none can be generated).

In the present experiments, we operationalize the discriminative

power of a control decision as: DP = 1 - ((HE!OE + HA/KA) / 2), where

HE is the number of observable events to which the control decision

would give its highest possible event rating, OE is the number of

observable event types, HA is the number of known actions to which

the control decision would give its highest possible action rating, and

KA is the number of known actions.

For example, Guardian might make one of these alternative control

decisions: "React to high PIP," "Respond to important patient data," or
"Reason about data." Assuming that observed events randomly

sample the distribution of observable events and that relevant

actions are normally distributed among observable events, these

three decisions give the theoretical distributions of ratings illustrated

in Figure 5. "Reason about data" is the least discriminative of the

three decisions; it gives its highest possible rating to all possible

actions. In the worst case. Guardian might have to try a:'

combinations of observed events and relevant actions before

generating a possible action that is good enough. "Respond to

important patient data" is moderately discriminative; it gives

normally distributed ratings with a mean ratings around 50. More
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importantly, it gives its highest rating to only about 20% of the

possible combinations of observed events and relevant actions. Thus,

Guardian can use it to bound the maximum number of observed

events and relevant actions it must consider before generating a

possible action that is good enough. "React to high PIP" is the most

discrimintative of the three control decisions; it gives its highest

possible rating to very few possible actions and its lowest possible

rating to most possible actions. Guardian can use it to severely bound

the number of observed events and relevant actions it must consider

before generating a possible action that is good enough. Of course,

these simplifying assumptions do not hold in any real agent and so

we examine the predictions experimentally.

100

50

0.0 .25 .50 .75 1.0

Distribution of possible action ratings for:
Low DP: Reason about events.
Medium DP: Respond toimportant data.
High OP: React-to high PIP.

Figure 5. Theoretical distributions of ratings given to possible
actions generated from observable events and known actions
with respect to control plans of different discriminative power.
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To test the predictions, we measured Guardian's cycle time during

the same carefully controlled segment of the longer monitoring

scenario described above, in the 4 times base rate condition for both

observed events and known actions. We manipulated three

experimental variables with respect to Guardian's control plan:

discriminative power of the event description, of the action

description, and of the two together. In a representative run of the

experimental segment, event descriptions of low, medi,;m, and high

discriminative power gave their highest possible rating to 61, 100,

and 144 of 283 observed events. Action descriptions of low, medium,

and high discriminative power gave their highest possible ratings to

x, 1.5x, and 2x of 408 known actions.

The results confirm the predictions with respect to control-plan

event specificity. The cycle time was 2048 msec when the control

plan event specificity was highest; 2175 msec for the medium level

of control plan specificity; and 2444 msec for the least-specific

control plan. The results, however, showed no systematic effect of

control-plan action specificity, with the high-specificity condition

having a cycle time only 34 msec different from that of the low-

specificity condition - a difference of only about 1.5%.

5. Related Research

Although a number of researchers are studying ways to integrate

planning and reactivity [Alterman 88; Drummond and Bresina 90;

Durfee and Lesser 88; Georgeff and Lansky 87; Godefroid and Kabanza
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91; Mitchell 90], the proposed satisficing algorithm is most similar to

Maes's spreading activation mechanism for action selection. Basically,

she defines a network of actions (which she calls "competence

modules"), each of which is related to the environment by a

condition-list, to global goals by its add-list and delete-list, and to

other actions by successor, predecessor, and conflictor links. Actions

receive activation when their conditions, add-list goals, predecessors,

or successors are activated. They receive inhibition when their

conflictors are activated or their delete-list goals are protected.

Activation and inhibition continuously flow through the net york,

changing the activation-levels of the individual actions. An action is

executable when all elements of its condition-list are true; an

executable action is selected for execution when its activation-level

reaches a certain threshold.

Despite their use of very different mchanisms, Maes's approach and

ours share several key features:

"* the potential to execute any known action at any time;

"• the distinction between actions that are executable and those

that are selected for execution;

* the use of goals and pre-conditions together to generate potential

actions;

* the ability to operate under different goals without changing the

basic mechanism.

We have a few quibbles with Maes's approach model (e.g., virtual

sensors finesse an important part of the problem). However, overall,
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we believe the two approaches have complementary strengths.

Maes's spreading-activation mechanism is more powerful and

efficient than our symbolic mechanism, especially for more complex

control plans than the simple event-action descriptions we used in

the present experiments. In fact, even before reading Maes's paper,

we had deve )ped a programmable spreading-activation mechanism

for another purpose [Wolverton and Hayes-Roth 92] and considered

using it in our generator. Perhaps now we will apply it to plan-

constrained generation of possible actions. On the other hand, our

mechanism offers a more powerful approach to goal-directed

planning and control of action, especially for autonomous agents

operating in more complex task environments. It would be interesting

to integrate the strengths of both approaches in a single model.

6. Conclusions

The Satisficing algorithm is more complex than the Exhaustive

algorithm and requires considerably more computation: maintaining

the events in sorted order; checking for buffer overflow; carrying

over from one cycle to the next the events and actions that remained

unprocessed upon termination with a deadline or good-enough

interrupt; and the execution of repeated tests for termination of

search within a loop. What is gained is a control regime that is

sensitive to external information while following a global plan, and

that is apparently able to focus its processing, during critical

situations, to such a high degree that it becomes immune to the

effects of very heavy information loads.
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The Satisficing algorithm successfully exploits the control plan not

only to choose one of several possible actions, but also to prune its

search for such possible actions. As evidence, we presented evidence

that weakening the specificity of the control plan slows diminishes

the efficiency of the search for possible actions. Furthermore, each

component of the satisficing algorithm contributes its share. The

results reported in Figure 4 and the accompanying text show that,

when the optimizations of the Satisficing algorithm are successively

relaxed, the algorithm dramatically loses its immunity to information

load, quickly becoming overwhelmed when the number of known

actions and, even more strikingly, the rate of observation events

increase. The various components of the Satisficing algorithm, do not

combine additively but rather act together synergistically to manage

complexity, lending compelling evidence that this algorithm

embodies is a principled as well as effective approach to the tradeoff

between sensitivity to external data and goal-driven planning.
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